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ABSTRACT
Over the last decade there has been a huge proliferation 
on the use of multimedia content throughout the world. 
This has led to the growth of a large number digital 
media repositories. As such an efficient and fast 
mechanism for retrieval of media content from these 
repositories assumes fundamental importance. This 
paper reports the results of experimentation done on 
audio clips in order to extract feature information from 
them and utilize these to create an automatic system for 
discriminating speech and music. Three features, namely, 
silence ratio, standard deviation of ZCR and peak index 
in RMS histogram have been proposed. Most of the 
existing works involve a large number of features which 
not only makes the process computation intensive, but 
also introduces redundancies, as many of these features 
are dependent on each other. Furthermore, the 
classification tests are frequently heuristic-based and not 
derived from an analysis of the data. The aim of this 
paper is to limit on the number of these features and 
demonstrate that even single features by themselves can 
be used to attain performance accuracies to the tune of 
98%.

Keywords - Speech-music discrimination, Multimedia 

information systems, Content Based Storage and 
Retrieval, Pattern Recognition

I. INTRODUCTION

Over the last decade there has been a huge proliferation 
on the use of multimedia content throughout the world. 
Application areas like audio-on-demand, video-on-
demand, computer based training (CBT) packages, 
games and home entertainment, online business and 
corporate presentations, information kiosks and 
simulation packages, voice-mails etc. have led to the 
growth of a large number of digital media repositories 
all around the world. In this scenario an efficient and 
fast mechanism for retrieval of digital media content 
from these repositories assumes fundamental 
importance. A repository of media elements without an 
effective search and retrieval mechanism is comparable 
to a library without a catalog. Even though the 
information is present it is practically unavailable to 
somebody with a specific set of search criteria. This 
paper addresses the problem of audio retrieval based on 
pre-defined content based features. Even though a 
substantial amount of research work has been done in 
this area, most of them involve a large number of 

features which not only makes the process computation 
intensive, but also suffers from redundancies as many of 
these features are dependant on each other. Furthermore, 
the classification tests are frequently heuristic-based 
and not derived from an analysis of the data. The aim of 
this paper is to limit the number of features, which are 
however so chosen as to provide accuracies to the tune 
of 98%.

The organization of the paper is as follows: section 2 
provides an overview of related work, section 3 outlines 
the proposed approach with discussions on overview, 
feature computation and classification schemes, section 
4 provides details of the dataset and experimental 
results obtained and section 5 provides the overall 
conclusion and the scope for future research.

II. PREVIOUS WORK

The initial approaches for content-based audio similarity, 
involving comparisons between individual samples [1], had 
limited accuracy because of the possibility of their using 
different digitization parameters. Later approaches used 
features extracted from audio files to characterize and 
compare them. Loudness, indicated by the audio signal’s 
root mean square (RMS) value [2, 3, 4, 5, 6] is defined as 
the following, where E is the average energy of the audio 
piece, N the total number of samples in the audio piece, 

and ix the sample value of the i-th sample :
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The zero crossing rate (ZCR) [2, 3, 4, 6, 7, 8] indicates 
the frequency at which the signal crosses the zero amplitude 
level. Speech being usually made up of a collection of words 
with gaps of silence in between, speech signals display a 
higher crossing frequency as compared to music. The 
average ZCR is defined as :
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where sgn( )nx is the sign of the n-th sample nx and can be 

1, 0 or –1, N is the total number of samples. 
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The silence ratio (SR) [2, 7] is a measure of the silent 
portions of an audio relative to its total duration. Due to the 
presence of background noise, “silence” usually means 
portions whose loudness (RMS) values lie below a certain 
threshold, rather than being absolute zeros. Pauses between 
words in speech, lead to a higher value of SR as compared 
to music. 

Audio signals might be represented in frequency domain 
to highlight features related to their frequency components. 
The Discrete Fourier Transform (DFT) [2, 3, 7, 8, 9] 
provides one of the primary means for such conversion :
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where 2 /k k N  , nx is a discrete signal with N

samples, k is the DFT bin number. 
The frequency range of an audio signal is computed by 

taking the difference between the highest and lowest non-
zero frequency components. Since sound generated from the 
human voice box (larynx) usually does not exceed 7 kHz in 
frequency, in contrast to musical sounds from instruments 
which can cover the entire audible range from 20 Hz to 20 
kHz, average frequency range of speech signals are lower 
than those of music signals. Frequency range is generally 
indicated by the amplitude of the centroid of the frequency 
domain waveform.   

Another frequency domain feature of an audio signal is 
harmonicity [2, 10]. Harmonicity refers to the proportion of 
the audio signal which is harmonic i.e. signal components 
having frequency values which are multiples of a lower or 
base frequency. Music has been observed to be much more 
harmonic than speech, in fact harmonicity itself is believed 
to produce the sensation of “musical sound” in human ears 
and brain. Often the base frequency is the lowest or 
fundamental frequency of the audio signal

It is difficult to compute fundamental frequency of an 
aperiodic signal, where the concept of “periodicity” is not 
very well defined. One popular way of doing so is by using 
the “cepstrum” [11, 12]. It relies on the fact that if the 
original audio signal contains a number of harmonic 
components, then its frequency spectrum would show peaks 
at frequency values corresponding to the harmonics. A 
second transform of the spectrum waveform to the 
frequency domain (through Fourier Transform) would 
indicate a peak corresponding to the periodicity in the 
spectrum, which in turn indicates the fundamental 
frequency, being a measure of the gap between the peaks in 
the spectrum. This double frequency transform of the audio 
signal is referred to as the “cepstrum” 
    Most of the authors use a combination of multiple 
features to characterize audio content. In [6] four features 
based on the ZCR – variance of the derivative, third central 
moment, a threshold value and a skewness measure, have 
been used. In [4] features like energy function, average 
ZCR, fundamental frequency and spectral peaks have been 
used to achieve a performance of 95%. In [5] the authors 
use 13 features, related to the power spectrum, ZCR, 
cepstrum and their variances. [9] uses energy spectral based 

features like spectral centroid, flux and moments, as well as 
pitch, harmonicity and cepstral coefficients. [10] uses 
loudness, pitch, brightness, bandwidth and harmonicity as 
features.

III. PROPOSED APPROACH

Silence Ratio    

As already mentioned, the silence ratio (SR) indicates the 
proportion of the sound piece that is silent. Silence is 
defined as a period within which the absolute amplitude 
values of a certain number of samples are below a certain 
threshold. The silence ratio is calculated as the ratio between 
the sum of silent periods and the total length of the audio 
piece. There are two critical issues involved. The first is 
how to decide if a sample is silent. In this work silence is 
defined in terms of an experimentally determined RMS 

threshold value. Let TR represent this threshold value of 

RMS. The second issue is to decide how many consecutive 
silent samples would qualify for a silent zone in the audio. 
In this work audio clips are considered to be made of a 
collection of audio frames each of 20 ms duration. The 
instantaneous accuracy is fixed at 20 ms because the human 
perceptual system is generally not more precise, and 
moreover because speech signals remain stationary for 5–20 
ms [13]. A silent zone is said to occur when all audio 

samples within an audio frame are silent. Thus if fn is the 

total number of samples in an audio frame of 20 ms 

duration, and ix is the sample value of the i-th sample, then 

a frame is designated as silent when the following condition 
is true.
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Silence ratio RS is calculated as the ratio of the number of 

silent frames sfN to the total number of frames fN in an 

audio clip. 
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Since human speech contains gaps between words and 
sentences, speech files in general contains larger number of 
silent zones than music files..

Standard Deviation of ZCR

A statistical measure derived from ZCR, given by equation 
(2), has been used as a feature for discrimination in this 
work - standard deviation value (σZ). An audio file is 
partitioned into a number of logical frames, each frame 
consisting of a fixed number of audio samples. For each 
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frame the ZCR is computed over all the samples of the 
frame. Each frame is thereafter represented by a single ZCR 
value. The standard deviation value of ZCR over all audio 
frames in a file is calculated to generate the σZ value. The 
values were found to be lower for music than for speech

Peak Index in RMS Histogram

The third feature used is based on the RMS value, given by 
equation (1). RMS has been shown to be independent of 
ZCR values [3] as the former depends on the signal 
amplitude while the latter on the signal frequency. An audio 
clip is partitioned into a number of audio frames, each of 20 
ms duration. For each frame RMS value is computed over 
the samples of the frame. A 256-bin histogram is computed 
by plotting the number of frames in an audio file against the 
RMS bin value. It is observed that the peak value in the 
RMS histogram occurs at lower RMS index value for speech 
than for music.

IV. EXPERIMENTATIONS

Training Phase

For experimentations audio samples from Dan Ellis’ audio 
database has been used, available at 
http://www.ee.columbia.edu/~dpwe/sounds/musp/music-
speech-20060404.tgz. The training set contains 60 speech 
samples, labeled here as S01 to S60, and 60 music samples, 
labeled as M01 to M60. The digitization parameters are 
22050 Hz sample rate, 16-bit mono. Each audio file is of 15 
second duration. The music files are of both vocal and 
instrumental types. The vocal type involves songs sung by 
single or multiple artists along with accompanying music, 
while the non-vocal type contains only instrumental music 
involving piano, violin, drums etc., The following files 
contain only instrumental music: M01, M02, M15, M16, 
M17, M21, M23, M24, M32, M33, M34, M38, M39, M40, 
M41, M42, M47, M54, M55, M56, M57, M59.

For characterizing the audio each 15 second clip is 
divided into a collection of 750 non-overlapping audio 
frames, each of 20 ms duration. The instantaneous accuracy 
is fixed at 20 ms because the human perceptual system is 
generally not more precise, and moreover because speech 
signals remain stationary for 5–20 ms [13]. The maximal 
interval for measuring speech characteristics should 
therefore be limited to intervals of 20 ms. At a sample rate 
of 22050 Hz, each audio frame consists of 441 samples.
     Silent zones have been calculated by computing the RMS 
value of audio samples in each frame and by considering a 
frame to be silent if the RMS value is less than an 
experimentally determined threshold value of 0.01. The 
number of silent frames is then summed over the entire file. 
The percentage of silent audio frames is considered as a 
feature for discrimination. Since human speech contains 
gaps between words and sentences, speech files in general 
contains larger number of silent zones than music files. Fig. 
1 shows the plot of the number of silence zones for each of 
the 60 speech files and 60 music files. For speech the 

maximum value is found to be 260, the minimum value 0 
while most of the music files has silence zones between 15 
and 0, the notable exceptions being M12 (48) where the 
song fades off gradually towards the end, and M54 (141) 
which contains a piano sequence which becomes almost 
inaudible towards the middle.  
    A statistical measure derived from ZCR have been used 
as a feature for discrimination in this work - standard 
deviation value (σZ). An audio file is partitioned into a 
number of logical frames, each frame consisting of a fixed 
number of audio samples. For each frame the ZCR is 
computed over all the samples of the frame. Each frame is 
thereafter represented by a single ZCR value. The standard 
deviation value of ZCR over all audio frames in a file is 
calculated to generate the σZ value. As shown in Fig. 2, the 
standard deviation of ZCR was much higher for speech 
having a maximum value of 0.1753, a minimum of 0.0396, 
than music with a maximum of 0.1270, minimum of 0.0110. 
So there appears to be a demarcation line at 0.1 below which 
most samples were music and above which most samples 
were speech.

Figure 1. Silent frame count for Speech and Music

      

Figure 2. SD-ZCR values for Speech and Music

    The third feature used is based on the RMS value, which 
is a measure of the average energy content of the audio 
signal. In general it was observed that peaks in RMS 
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histogram occurs at lower values for speech than for music.
The RMS index values are plotted for speech and music, as 
shown in Fig. 3. It shows that speech was clustered at the 
bottom of the graph with index values less than 12, while 
music was spread evenly across the middle and upper half of 
the plot.

Figure 3. RMS peak index for Speech and Music

Testing Phase

The test data set consists of 20 speech samples from the 
same database, labeled here as T01 to T20, 20 vocal music 
samples, labeled as T21 to T40 and 20 non-vocal 
(instrumental) music samples labeled as T41 to T60. The 
digitization parameters are 22050 Hz sample rate, 16-bit 
mono. Each audio file is of 15 seconds duration. The same 
20 ms audio frame size has been used.

Figure 4. Plot of silence zones for test clips

The plot of silence zones for the 60 test samples is 
shown in Fig. 4. Based on the training set observations, a 
threshold value of 15 was used to discriminate between 
speech and music, i.e. if number of silent zones < 15, the file 
is classified as music, otherwise as speech. Table 1 shows 
that based on silent zones alone, 18 of 20 speech samples 
could be identified correctly – accuracy of 90%. 

Table 1. Confidence grid based on silent zones

S/N SZ P S/N SZ P S/N SZ P
T01 160 S T02 155 S T03 70 S
T04 113 S T05 161 S T06 119 S
T07 204 S T08 126 S T09 0 M
T10 155 S T11 0 M T12 53 S
T13 37 S T14 61 S T15 30 S
T16 149 S T17 103 S T18 22 S
T19 79 S T20 137 S T21 0 M
T22 0 M T23 0 M T24 0 M
T25 0 M T26 0 M T27 0 M
T28 0 M T29 0 M T30 0 M
T31 0 M T32 71 S T33 0 M
T34 0 M T35 0 M T36 0 M
T37 0 M T38 0 M T39 0 M
T40 0 M T41 0 M T42 0 M
T43 0 M T44 0 M T45 0 M
T46 0 M T47 0 M T48 0 M
T49 0 M T50 0 M T51 0 M
T52 0 M T53 0 M T54 0 M
T55 0 M T56 11 M T57 0 M
T58 0 M T59 0 M T60 4 M

Sample T09 is identified wrongly because there are no gaps 
in the spoken sample while in T11 presence of background 
noise has blanked out the gaps. Out of 40 music samples 39 
has been correctly identified – an accuracy of 97.5%. T32 
has been wrongly classified because even though it is a
song, there are distinct gaps in the sequence. (S=speech, 
M=music)

Figure 5. Plot of standard deviation of ZCR for test clips

For standard deviation of ZCR, we take the threshold value 
as 0.1 below which samples would be considered as music 
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and above which samples would be considered as speech. 
Fig. 5 shows the plot of the standard deviation of ZCR for 
test samples. The corresponding confidence grid is shown in 
Table 2. Out of 20 speech samples, 16 are correctly 
identified giving an accuracy of 80%. Out of 40 music 
samples, all have been correctly identified giving an 
accuracy of 100%.

Table 2. Confidence grid based on SD of ZCR

S/N σ ZCR P S/N σ ZCR P
T01 0.1058 S T02 0.0892 M
T03 0.1275 S T04 0.1295 S
T05 0.1384 S T06 0.1210 S
T07 0.0909 M T08 0.1041 S
T09 0.0779 M T10 0.1459 S
T11 0.1032 S T12 0.1316 S
T13 0.1493 S T14 0.1531 S
T15 0.1010 S T16 0.0813 M
T17 0.1283 S T18 0.1097 S
T19 0.1266 S T20 0.1237 S
T21 0.0474 M T22 0.0410 M
T23 0.0433 M T24 0.0422 M
T25 0.0655 M T26 0.0612 M
T27 0.0603 M T28 0.0512 M
T29 0.0387 M T30 0.0430 M
T31 0.0597 M T32 0.0807 M
T33 0.0393 M T34 0.0526 M
T35 0.0428 M T36 0.0348 M
T37 0.0668 M T38 0.0542 M
T39 0.0706 M T40 0.0281 M
T41 0.0331 M T42 0.0508 M
T43 0.0354 M T44 0.0366 M
T45 0.0183 M T46 0.0454 M
T47 0.0124 M T48 0.0553 M
T49 0.0217 M T50 0.0218 M
T51 0.0565 M T52 0.0468 M
T53 0.0253 M T54 0.0406 M
T55 0.0573 M T56 0.0270 M
T57 0.0371 M T58 0.0454 M
T59 0.0413 M T60 0.0712 M

Figure 6. Plot of peak vs. index of RMS histogram for test 
clips

Fig. 6 shows the peak vs. index in RMS histogram of test 
samples. Based on the training samples we fix up a 
threshold that if the index is less than or equal to 12, it is 
classified as speech, otherwise music. Table 3 shows the 
corresponding confidence grid.

Table 3. Confidence grid based on peak index in RMS 
histogram

S/N I P S/N I P S/N I P
T01 6 S T02 2 S T03 3 S
T04 10 S T05 3 S T06 10 S
T07 5 S T08 2 S T09 164 M
T10 3 S T11 12 S T12 1 S
T13 8 S T14 6 S T15 6 S
T16 2 S T17 1 S T18 152 M
T19 2 S T20 2 S T21 153 M
T22 141 M T23 155 M T24 96 M
T25 61 M T26 96 M T27 148 M
T28 198 M T29 74 M T30 147 M
T31 70 M T32 1 S T33 150 M
T34 146 M T35 197 M T36 81 M
T37 98 M T38 164 M T39 109 M
T40 169 M T41 80 M T42 109 M
T43 129 M T44 96 M T45 107 M
T46 32 M T47 92 M T48 31 M
T49 51 M T50 54 M T51 24 M
T52 175 M T53 93 M T54 118 M
T55 53 M T56 36 M T57 136 M
T58 162 M T59 120 M T60 20 M

Out of the 20 speech files 18 files have been identified 
correctly giving an accuracy of 90%. Out of 40 music files, 
39 have been identified correctly, giving an accuracy of 
97.5%.

V. CONCLUSION

This work demonstrates that audio discrimination need 
not necessarily deal with a large number of features. 
Single features taken at a time are able to provide 
reliable accuracy of more than 97%. Since a small 
number of features are involved, such discriminators 
might be included with existing application packages 
where searching and retrieving of digital audio is 
required e.g. commercially available multimedia 
authoring packages to help content developers to search 
for audio content quickly. Audio on Demand 
applications also can make use of such discriminators as 
an initial step for categorizing audio content. Future 
work will involve categorizing other databases as well 
as trying to discriminate between different types of 
music e.g. vocal / non-vocal, and recognize presence of 
specific instruments e.g. drums and flute.
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